English version of CTCHIPZ docs.

Supplied by: Mark Anderson

No warranties express or implied as to the accuracy of the following ctchipz.doc translation to English:

[image: image1]
ctchipz.exe V3.x exportable program
intelpci.cfg configuration data for Intel Pentium® Chipsets Triton, Neptune and Mercury

ctChipz makes possible the selection and placement of chipsets. The actual chipset information will refer to a configuration data file (extension .CFG). ctChipz Version 3 also manages 32-bit ports and can interact with PCI-chipsets.

Interactive work

[image: image2]
To select an Intel Pentium® chipset simply type the following:

ctchipz intelpci

Alternatively, you can specify name and path in the environment, for example

set chipset=C:\chipset\intelpci.cfg

then it's enough to simply make the call to ctchipz.

ctchipz shows the actual register setting. For each register referred to, the user can alter, interrupt or extend register contents. The following settings are possible:

S: Select between
Actuell: show only actual setting
or
Alle: show all possible settings.

The actual setting is marked in red.

M: Select between
Bitmuster: affected bits marked as 1, not affected as 0
Therefore about 11100001 for bit 7,6,5,1
Bit-Liste: explicit listing of bits (default)
Therefore 7..5,1 for bit 7,6,5,1

R: Repeat

I,/: New index (in hex)

?: Short Help

Q,ESC: Quit

CR: Further information on symbols not shown here

Register changes ####

H,$: Actual register value in hexadecimel.
Edit value with cursor right, left, hexnumeral, CR.
Quit with ESC
B,%: Actual register value in binary. Edit value with cursor right, left, binary numeral, CR.
Quit with ESC P: Asks for the bit pattern in the form of a bit list: =value

For 8-bit ports this means, for example

7..5,1:=%1111

For 16 and 32-bit ports the particular bit numbers are given in double digits, Therefore, for example

07..05,01:=%1111

In both cases, only the bits 7, 6, 5, and 1 were set. The rest remain unchanged.

Often only one bit will be changed. A useful example:

P31:=1

############################### WARNING ##############################

CHANGING CERTAIN CHIPSET REGISTERS CAN LEAD TO A COMPUTER CRASH!

In order to open a certain register, you can reference the index in the command line, for example

ctchipz intelpci /72

Command line, batch work, and macros

[image: image3]
A register positioned over the command line:

ctchpz intelpci /5E:=77

sets the 8-bit register 5Eh to 77h (also all values without 'h' in hex , register indexes from A0h need a preceding 0). Through this the storage space from E000h to E7FFFh is set to read/write cacheable. The program reports the changed register (before/after) without waiting for a request from the user.

Alternatively, binary values are possible:

ctchipz intelpci /5E:=%01110111

To set up just part of a range //something here about surrendering "Don't-Care Bits"// about from E000h to E3FFFh in order to set write-only:

ctchipz intelpci /5E:=%xxxx0010

The surrendered bitcount must thereby agree with the width of the register (usually 8).

In order to simplify things somewhat, several macros and variables are defined in the configuration data files. Thus, the call referred to above is also evident with

ctchipz intelpci /SE0=WON

There are suitable macros in IntelPCI for

/SC0 (C0000..C3FFF) in 16-KB steps to
/SF0 (F0000..FFFFF)

with the attributes:

rwc =x111 ;;read/write cacheable
rwn =x011 ;;read/write not cacheable
won =x010 ;;write only not cacheable
roc =x101 ;;read only cacheable
ron =x001 ;;read only not cacheable
bus =x000 ;;read/write to PCI bus

Further macros are defined which also allow continuous work in cache input/output or modification of caching strategies, etc. These macros should not be run in virtual mode (EMM386, Max, QEMM, Windows- or OS/2 DOS-BOX), since here data consistency is not 100% secure. Moreover, do not use the protected processor command WBINVD to flush caches.

The "purging" of the cache, furthermore, will utilize the reading of a large storageblock (twice the cache size). It is no longer possible to use caches of 512K or larger in real mode.

With the command switch

/L2

or else

/L2=512

use ctchipz for flushing in protected mode

(for larger caches /L2=1024 etc.)

In the command line you can commit to more register values, macros and switches.

For example

ctchipz intelpci /L2 /58+%xxxxxxx0 /sE0=rwc /sE4=rwc.../Q

The switch /Q (QUIET) is concerned with only the dispensing of eventual error messages. You can also cancel copious (error) output with the >Nul command.

For bigger configurations use

/dat=name

The possible text data statement in which register values, macros or further data are contained line by line ('/' can fall away), therefore

ctchipz intelpci /dat=my.config

and in my.config:

QUIET ;corresponds to the switch /Q
L2=512 ; only for 512K caches
58=%xxxxxxx0
sE0=rwc
sE4=rwc

Those macros which are defined take their configuration data from the chipset (Macro=...).Generally, there are macros like L2ON, L2OFF, L1ON, L1OFF, L2WT, L2WB, Dirty, etc. The Triton does not recognize L2ON but notes the statement of the installed cache size (e.g. L256ON or L512ON). Self-defined macros are simple to follow if you orient yourself to a good example in the listing.

