What is Bus Mastering?

Peripheral devices such as disk, tape, or communications cards, must move large amounts of data to or from the computer's RAM. There are several methods of moving this data.

The data transfer method requiring the least amount of hardware is called Programmed Input/Output or PIO. PIO was used by the WD1003, the hard disk controller used by the first PC/AT. PIO employs the CPU to move data between the peripheral controller card and the computer's memory. The 80286, 80386, and 80486 microprocessors used in PCs are well suited to this task since they can move blocks of data with a single String Move instruction. This fast data move instruction allows PIO transfers to reach speeds of about

2.5 Mbyte/sec.

The PIO protocol used by the original WD1003 controller, as well as today's IDE drives, was originally designed for low-end DOS environments. With this protocol, once the CPU has given a command to the disk controller, it waits for an interrupt from the controller indicating that one 512-byte sector can be transferred. When the interrupt is received, the CPU executes a String Move instruction to move the data between the system RAM and the controller's sector buffer. The String Move instruction executes a

tight loop of microcode within the CPU chip, moving one 512-byte sector in 256 16-bit operations. If the disk read or write command is for multiple sectors, the CPU then waits for another interrupt before transferring the next sector. One interrupt will occur for

each 512-byte sector transferred.

The primary drawback to PIO data transfer is that the CPU must be utilized for each sector of data to be moved. This not only limits transfer speed but also requires a large amount of CPU overhead for each I/O operation. I/O operations are slower and less CPU

bandwidth is available for other tasks. This makes PIO protocol unsuitable for multiuser environments like Unix or Novell fileservers.

A more sophisticated method of data transfer than PIO is Direct Memory Access or DMA. DMA relies on special hardware to move data directly to and from system RAM without processor intervention. During a data move operation, the DMA hardware suspends CPU operation and takes control over the system bus. The hardware then

automatically moves the data between system RAM and a buffer on the peripheral controller.

There are two primary types of DMA used in PCs. The lowest performance and least expensive of the two is Third Party DMA. This method of moving data is used by the floppy disk controller in PC/AT ISA and EISA computers. Third Party DMA relies on an

independent DMA controller, which is typically built into the PC mother board, to move data between a peripheral card (the first party) and system RAM (the second party). The DMA controller, which can be shared by multiple peripheral cards, is thus viewed as the

third party in this type of DMA.

The highest performance DMA type is called First Party or Bus Mastering DMA. Peripheral controllers which support Bus Mastering, have the ability to move data to and from system RAM without the help of the CPU or a third party DMA controller.

Bus Mastering allows data to be moved at much higher rates than PIO or Third Party DMA, because half as many bus cycles are needed. Both PIO and Third Party DMA require the CPU or DMA controller to alternately read a word from one device (the peripheral card or RAM) and write it to the other device. Each word requires at least

one bus cycle to be read and one bus cycle to be written. Bus Mastering peripheral controllers, however, only require bus cycles when accessing the RAM, so half as many cycles are needed. In addition, system RAM can be accessed using high speed methods like page mode access.

Because of this, peripheral controllers which support Bus Mastering can move data many times faster than controllers which use either PIO or Third Party DMA. Bus Mastering ISA controllers typically move data at 5 to 10 MBytes/sec. Bus Mastering EISA controllers move data at 33 Mbytes/sec. In addition, unlike PIO or Third Party DMA controllers, Bus Mastering controllers typically support Command Queuing and Scatter/Gather memory access, which greatly increase performance in multiuser environments like Unix and Novell.

A typical Bus Mastering controller would process an I/O command as follows:

1. The CPU creates a Command Block in system RAM and writes the address of this block into a register in the peripheral controller. The CPU can then perform other tasks. All remaining operations will be performed by the peripheral controller.

The Command Block contains parameters, specifying the type of operation, the amount of data and the location on the peripheral device. The Command Block may also contain pointers to a Scatter/Gather Table and a Status Block. The Scatter/Gather Table describes a list of data segments to be read or written to sequential locations on the peripheral device. These data segments may be scattered in many different areas of system RAM. The Status Block is a place in system RAM for the peripheral controller to save status information concerning the successful or unsuccessful completion of the command.

2. The peripheral controller becomes the Bus Master (takes control of the system bus) and DMAs the Command Block and Scatter/Gather Table into its local memory.

3. When the peripheral controller is ready to transfer the data, it again becomes the Bus Master and DMAs the data to the areas specified by the Scatter/Gather Table.

4. When the command is complete, the peripheral controller becomes the Bus Master and DMAs the Status information into the proper RAM location.

5. The peripheral controller interrupts the CPU to tell the computer that the command has completed.

For reprints, ask for Technology Focus Paper:

"What is Bus Mastering?"

Document Number MM-0090-002-A

from DPT Channel Marketing

(407) 830-5522

